

Issue 2018/11/08 Data Flow within the Quicklink Studio Solution

Quicklink Studio Solution

Page: 1

Data Flow within the Quicklink Studio Solution

Quicklink Studio Data Flow

When the Studio Application runs and is registered with an account it will inform the server

that it is available to be remotely controlled. Once this communication has been established

the Admin Portal for the account it is registered with will be able to control it, change any

settings and put the unit into a call.

The Studio Application will only be visible on the account it is registered with and the Admin

Portal is protected by a username and password with the added security of two factor

authentication. The admin portal has communications setup with both sides of the call

whether they are a Chrome Client or a Studio Application.

When a Studio Application is added to a call it will establish a connection with a signalling

server. Both sides of the call need to connect to the signalling server and they will pass

information to each other through the server so that the call can be setup correctly.

Assuming the firewalls of both sides of the call allow it then a connection will be made

directly between the participants. If a direct connection cannot be made between the callers,

then a relay server provided by Twilio (Appendix1) will be used to route the traffic.

When the Studio Application is unregistered, it will not be carrying out any external

communication. It only communicates with the server when it is registered and running.

All the flow of data is encrypted with TLS/SSL to make the system as secure as possible.

We use Amazon Route 53 (Appendix 2) for our servers. This means that Amazon’s service will

protect our servers from the majority of ddos attacks.

The Quicklink Studio uses WebRtc (Appendix 3) and follows all the standards involved with

this communication technology.

Issue 2018/11/08 Data Flow within the Quicklink Studio Solution

Quicklink Studio Solution

Page: 2

Appendix 1

Twilio

The first step in negotiating the connection for two WebRTC endpoints is STUN (Session

Traversal Utilities for NAT), and around 85% of the time that’s all you need to get your media

to flow directly. Twilio provides unlimited highly reliable STUN lookups for free, so your peer

to-peer calls are always free.

When media cannot be routed peer-to-peer, Twilio provides you a TURN (Traversal Using

Relay NAT) Media Relay point, ensuring your media can be routed through symmetric NATs

and other enterprise grade firewall scenarios.

With relay points deployed in eight different regions around the globe, Geo-DNS resolution

makes sure your media is always routed with the lowest latency possible.

Issue 2018/11/08 Data Flow within the Quicklink Studio Solution

Quicklink Studio Solution

Page: 3

Appendix 2

Amazon Route 53

Amazon Route 53 is a highly available and scalable cloud Domain Name System (DNS) web

service. It is designed to give developers and businesses an extremely reliable and cost-

effective way to route end users to Internet applications by translating names like

www.example.com into the numeric IP addresses like 192.0.2.1 that computers use to

connect to each other. Amazon Route 53 is fully compliant with IPv6 as well.

Amazon Route 53 effectively connects user requests to infrastructure running in AWS – such

as Amazon EC2 instances, Elastic Load Balancing load balancers, or Amazon S3 buckets – and

can also be used to route users to infrastructure outside of AWS. You can use Amazon Route

53 to configure DNS health checks to route traffic to healthy endpoints or to independently

monitor the health of your application and its endpoints. Amazon Route 53 Traffic Flow

makes it easy for you to manage traffic globally through a variety of routing types, including

Latency Based Routing, Geo DNS, Geoproximity, and Weighted Round Robin—all of which

can be combined with DNS Failover in order to enable a variety of low-latency, fault-tolerant

architectures. Using Amazon Route 53 Traffic Flow’s simple visual editor, you can easily

manage how your end-users are routed to your application’s endpoints—whether in a single

AWS region or distributed around the globe. Amazon Route 53 also offers Domain Name

Registration – you can purchase and manage domain names such as example.com and

Amazon Route 53 will automatically configure DNS settings for your domains.

Issue 2018/11/08 Data Flow within the Quicklink Studio Solution

Quicklink Studio Solution

Page: 4

Appendix 3

Abstract of Study of WebRTC Security (webrtc-security.github.io)

Web Real-Time Communication (abbreviated as WebRTC) is a recent trend in web

application technology, which promises the ability to enable real-time communication in the

browser without the need for plug-ins or other requirements. However, the open-source

nature of the technology may have the potential to cause security-related concerns to

potential adopters of the technology. This paper will discuss in detail the security of WebRTC,

with the aim of demonstrating the comparative security of the technology.

1. Introduction

WebRTC is an open-source web-based application technology, which allows users to send

real-time media without the need for installing plugins. Using a suitable browser can enable

a user to call another party simply by browsing to the relevant webpage. Some of the main

use cases of this technology include the following:

• Real-time audio and/or video calls

• Web conferencing

• Direct data transfers

Unlike most real-time systems (e.g. SIP), WebRTC communications are directly controlled by

some Web server, via a JavaScript API.

The prospect of enabling embedded audio and visual communication in a browser without

plugins is exciting. However, this naturally raises concerns over the security of such

technology, and whether it can be trusted to provide reliable communication for both the

end users and any intermediary carriers or third parties.

This report will address these topics and examine the protections that WebRTC provides to

provide security in all cases. For the purposes of this paper however, native applications will

be treated as being out of scope.

Issue 2018/11/08 Data Flow within the Quicklink Studio Solution

Quicklink Studio Solution

Page: 5

2. Overview of WebRTC Architecture

WebRTC enables direct media-rich communication between two peers, using a peer-to-peer

(P2P) topology. WebRTC resides within the user's browser and requires no additional

software to operate. The actual communication between peers is prefaced by an exchange of

metadata, termed "signalling". This process is used to initiate and advertise calls and

facilitates connection establishment between unfamiliar parties.

As depicted in Figure 1, this process occurs through an intermediary server:

A signalling protocol is not specified within WebRTC, allowing developers to implement their

own choice of protocol. This allows for a deeper degree of flexibility in adapting a WebRTC

app for a specific use case or scenario.

How does WebRTC communication work?

WebRTC relies on three APIs, each of which performs a specific function in order to enable

real-time communication within a web application. These APIs will be named and explained

briefly. The implementation and technical details of each protocol and technology are

outside the scope of this report, however the relevant documentation is readily available

online.

Issue 2018/11/08 Data Flow within the Quicklink Studio Solution

Quicklink Studio Solution

Page: 6

getUserMedia

For many years it was necessary to rely on third-party browser plugins such as Flash or

Silverlight to capture audio or video from a computer. However, the era of HTML 5 has

ushered in direct hardware access to numerous devices and provides JavaScript APIs which

interface with a system's underlying hardware capabilities.

getUserMedia is one such API, enabling a browser to access a user's camera and

microphone. Although utilised by WebRTC, this API is offered as part of HTML 5.

RTCPeerConnection

RTCPeerConnection is the first of two APIs which are offered specifically as part of the

WebRTC specification. A RTCPeerConnection interface represents the actual WebRTC

connection and is relied upon to handle the efficient streaming of data between two peers.

When a caller wants to initiate a connection with a remote party, the browser starts by

instantiating a RTCPeerConnection object. This includes a self-generated SDP description to

exchange with their peer. The recipient in turn responds with its own SDP description. The

SDP descriptions are used as part of the full ICE workflow for NAT traversal.

With the connection now established, RTCPeerConnection enables the sending of real-time

audio and video data as a bitstream between browsers.

Ultimately, RTCPeerConnection API is responsible for managing the full life-cycle of each

peer-to-peer connection and encapsulates all the connection setup, management, and state

within a single easy-to-use interface.

RTCPeerConnection has two specific traits: - Direct peer-to-Peer communication between

two browsers - Use of UDP/IP - there is no guarantee of packet arrival (as in TCP/IP), but

there is much reduced overhead as a result. - (By allowing the loss of some data, we can

focus upon offering real-time communication.)

References: [1] [2]

RTCDataChannel

The RTCDataChannel is the second main API offered as part of WebRTC and represents the

main communication channel through which the exchange of arbitrary application data

occurs between peers. In other words, it is used to transfer data directly from one peer to

another.

Issue 2018/11/08 Data Flow within the Quicklink Studio Solution

Quicklink Studio Solution

Page: 7

Although several alternative options for communication channels exist (e.g. WebSocket,

Server Sent Events), however these alternatives were designed for communication with a

server rather than a directly-connected peer. RTCDataChannel resembles the popular

WebSocket, but instead takes a peer-to-peer format while offering customisable delivery

properties of the underlying transport.

2.1. Underlying Technologies

The three main APIs are the developer-facing aspects of WebRTC, but there are a number of

foundational technologies which are utilised in order to provide these protocols (the

RTCPeerConnection and RTCDataChannel APIs).

ICE, STUN, and TURN are necessary to establish and maintain a peer-to-peer connection

over UDP. DTLS is used to secure all data transfers between peers, as encryption is a

mandatory feature of WebRTC. Finally, SCTP and SRTP are the application protocols used to

multiplex the different streams, provide congestion and flow control, and provide partially

reliable delivery and other additional services on top of UDP.

Issue 2018/11/08 Data Flow within the Quicklink Studio Solution

Quicklink Studio Solution

Page: 8

SDP: Session Description Protocol

Session Description Protocol (SDP) is a descriptive protocol that is used as a standard

method of announcing and managing session invitations, as well as performing other

initiation tasks for multimedia sessions. SDP represents the browser capabilities and

preferences in a text-based format, and may include the following information: - Media

capabilities (video, audio) and the employed codecs - IP address and port number - P2P data

transmission protocol (WebRTC uses SecureRTP) - Bandwidth usable for communication -

Session attributes (name, identifier, time active, etc.) -> However these are not used in

WebRTC. - Other related metadata...

As of today, SDP is widely used in the contexts of Session Initiation Protocol (SIP), Real-time

Transport Protocol (RTP), and Real-time Streaming Protocol (RSP).

References: [3]

ICE: Interactive Connectivity Establishment

Signalling requires the initial use of an intermediary server for the exchange of metadata, but

upon completion WebRTC attempts to establish a direct P2P connection between the users.

This process is carried out through the ICE framework.

ICE is a framework used for establishing a connection between peers over the internet.

Although WebRTC tries to utilise direct P2P connections, in reality the widespread presence

of NAT (Network Address Translation) makes it difficult to negotiate how two peers will

communicate.

Due the continuing widespread prevalence of IPv4 addresses with their limited 32-bit

representation, most network-enabled devices do not have a unique public-facing IPv4

address with which it would be directly visible on the Internet. NAT works by dynamically

translating private addresses into public ones when an outbound request passes through

them. Similarly, inbound requests to a public IP are converted back into a private IP to ensure

correct routing on the internal network. Resultantly, sharing a private IP is often not enough

information to establish a connection to a peer. ICE attempts to overcome the difficulties

posed by communicating via NAT to find the best path to connect peers.

Issue 2018/11/08 Data Flow within the Quicklink Studio Solution

Quicklink Studio Solution

Page: 9

By trying all possibilities in parallel, ICE can choose the most efficient option that works. ICE

first tries to make a connection using the host address obtained from a device's operating

system and network card; if that fails (which it inevitably will for devices behind NATs) ICE

then obtains an external address using a STUN server. If that also fails, traffic falls back to

routing via a TURN relay server.

The candidate communication routes are rendered in a text-based format, and the list

ordered by priority. The options take the form of one of the following: - Direct P2P

communication - Using STUN, with a port mapping for NAT traversal (This route eventually

resolves to direct P2P communication) - Using TURN as an intermediary (this configuration

employs relayed communication rather than P2P)

Out of all possible candidates, the route with the smallest overhead is chosen.

References: [4]

STUN: Session Traversal Utilities for NAT

In order to perform P2P communication, both parties necessarily require at least the

knowledge of their peer's IP address and the assigned UDP port. As a result, a certain

amount of information exchange is necessary before WebRTC communication can be

established.

A STUN server is used by each peer to determine their public IP address, and is referenced

by the ICE framework during connection establishment. STUN servers are typically publically

accessible and can be used freely by WebRTC applications.

TURN: Traversal Using Relays around NAT

In the eventuality that establishing a P2P communication fails, a fallback option can be

provided via a TURN server. By relaying traffic between peers the WebRTC communication

can be ensured, but can suffer degradations in media quality and latency.

TURN servers can ensure high success in setting up calls, regardless of the end-user's

environments. As the data is sent through an intermediary server, server bandwidth is also

consumed. If many calls are simultaneously routed through the server, the bandwidth was

also become considerable in size.

The server itself is typically not freely accessible and has to be specifically provided (or

rented) by the application provider.

Issue 2018/11/08 Data Flow within the Quicklink Studio Solution

Quicklink Studio Solution

Page: 10

3. Browser-based Security Considerations

There are several ways in that a real-time communication application may impose security

risks, both on the carrier and the end users. Such security risks can be applicable to any

application which deals with the transmission of real-time data and media.

WebRTC differs from other RTC apps by providing a strong and reliable infrastructure for

even new developers to utilise without compromising on security. We will now proceed to

discuss how WebRTC deals with each of these risks in turn.

References: [5]

3.1. Browser Trust Model

The WebRTC architecture assumes from a security perspective that network resources exist in

a hierarchy of trust. From the user's perspective, the browser (or user client) is basis of all

WebRTC security, and acts as their Trusted Computing Base (TCB).

The browser's job is to enable access to the internet, while providing adequate security

protections to the user. The security requirements of WebRTC are built directly upon this

requirement; the browser is the portal through which the user accesses all WebRTC

applications and content.

While HTML and JS provided by the server can cause the browser to execute a variety of

actions, the browser segregates those scripts into sandboxes. Said sandboxes isolate scripts

from each other, and from the user's computer. Generally speaking, scripts are only allowed

to interact with resources from the same domain - or more specifically, the same "origin".

The browser enforces all security policies that the user desires and is the first step in the

verification of all third parties. All authenticated entities have their identity checked by the

browser.

If the user chooses a suitable browser which they know can trust, then all WebRTC

communication can be considered "secure" and to follow the standard accepted security

architecture of WebRTC technology. However, if there is any doubt that a browser is

"trustable" (e.g. having been downloaded from a third party rather than a trusted location),

then all following interaction with WebRTC applications is impacted and may not be reliably

secure.

In other words, the level of trust provided to the user by WebRTC is directly influenced by

the user's trust in the browser.

Issue 2018/11/08 Data Flow within the Quicklink Studio Solution

Quicklink Studio Solution

Page: 11

3.2. SOP: Same Origin Policy

It is a fundamental aspect of the DOM that all webpage resources are fetched from the

page's web server, whenever some or all of the page is loaded. Fetching of resources takes

place either when a page is freshly loaded by the browser, or when a script residing on a

webpage makes such a request. Such scripts are readily able to make HTTP requests via e.g.

the XMLHttpRequest() API, but are not permitted to make such requests to just any server

they specify. Rather, requests must be made to the same "origin" from where the script

originated. An "origin" comprises of a URI scheme, hostname, and port number. This overall

restriction is termed the "Same Origin Policy" (SOP).

SOP forces scripts to execute in isolated sandboxes specific to their originating domain,

therefore preventing pages from different origins or even iframes on the same page from

exchanging information. Webpages and scripts from the same origin server remain

unhindered in interacting with each other’s JS variables. As such, the origin constitutes the

basic unit of web sandboxing.

Through enforcing execution sandboxes on a per-origin basis, the end user is protected from

the misuse of their credentials. You would reasonably expect to safely use a social

networking website without a script executing from within an advertisement panel and

stealing your login information.

Similarly, the servers of e.g. the webpage provider are protected from attacks mounted via

the user's browser; If such safeguards did not exist, DoS attacks could otherwise be launched

through abusive resource requests.

References: [6]

3.2.1 Bypassing SOP

SOP is incredibly important for the security of both the user and web servers in general,

although it does have the disadvantage of making certain types of web app harder to create.

Methods of permitting inter-site interaction do exist, although these are typically mutually

consensual and limited to certain channels.

The W3C Cross-Origin Resource Sharing (CORS) spec is one of the answers to the problem. It

allows the browser to contact the script's target server to determine whether it is willing to

participate in a given type of transaction. As such, cross-origin requests can be safely

allowed, by giving the target server the option to specifically opt-in to certain requests and

decline all others.

Issue 2018/11/08 Data Flow within the Quicklink Studio Solution

Quicklink Studio Solution

Page: 12

WebSockets is another option allowing similar functionality, but on transparent channels

rather than isolated HTTP requests. Once such a connection has been established, the script

can transfer traffic and resources as it likes, with the necessity of framing as a series of HTTP

request/response transactions.

In both cases, the initial verification stage prevents the arbitrary transfer of data by a script

with a different origin.

4. WebRTC Security Considerations

References: [7]

4.1. Installation and Updates

A prevalent issue with traditional desktop software is whether one can trust the application

itself. Installation of new software or a plugin can potentially surreptitiously install malware

or other undesirable software. Many end users have no idea where the software was made or

exactly who they are downloading the app from. Malicious third parties have had great

success in repackaging perfectly safe and trusted software to include malware and offering

their custom package on free software websites.

WebRTC however is not a plugin, nor is there any installation process for any of its

components. All the underlying WebRTC technology is installed simply as part of

downloading a suitable WebRTC-compatible browser, such as Chrome or Firefox. If a user

has such a browser, they can browse to and use any WebRTC application with no other setup

or preparation required. As such there is no risk of installation of malware or viruses through

the use of an appropriate WebRTC application. However, WebRTC apps should still be

accessed via a HTTPS website signed by a valid authenticator such as Verisign.

Another related consideration is the patching of discovered security flaws in software. As

with any software technology, it is entirely possible that future bugs or vulnerabilities will be

discovered in WebRTC. If a vulnerability is found in a traditional desktop application (such as

a typical VoIP application), development of a patch may take considerable time. This is a

frequent issue with application development, as security is still often treated as a secondary

consideration after functionality. Going deeper than this, we can contemplate hardware-

based communication methods. How often does a VoIP phone get a security update? Can

you trust he person responsible to update it regularly? Do you even know who is

responsible?

Issue 2018/11/08 Data Flow within the Quicklink Studio Solution

Quicklink Studio Solution

Page: 13

Contrary to this, browsers are a fast-paced development scene due to the frequency and

range of risks users are exposed to, as well as their ubiquitous nature (and the importance of

information accessed through the browser). As WebRTC's components are offered as part of

a browser, they are likewise updated whenever the browser is updated. If a future

vulnerability were to be found in a browser's WebRTC implementation, a fix will likely be

delivered rapidly. This can particularly be seen to be true in Chrome and Firefox's rapid

development cycles. In fact, in the era of automatic updates, WebRTC components can be

updated through a new browser version as soon as the patch is made available on servers.

Most modern browsers have a good record of auto-updating themselves within 24 hours of

the discovery of a serious vulnerability or threat.

As a side note: Although we have stated that WebRTC requires no plugins to be installed, it

is possible that third-party WebRTC frameworks may offer plugins to enable support on

currently unsupported browsers (such as Safari and IE). User caution (or a supported

browser) is recommended in such instances.

4.2. Access to Media/Local resources

The browser can access local resources (including camera, mic, files), which leads the

inevitable concern of a web application accessing a user's microphone and camera. If web

applications could freely gain access to a user's camera or microphone, an unscrupulous app

may attempt to record or distribute video or audio feeds without the user's knowledge. It

could be a simple matter for a website residing in a background tab to abuse the user's trust

(the user may not even realise a site harbour such a communication application).

WebRTC combats this by requiring the user to give explicit permission for the camera or

microphone to be used (both can be configured individually). It is possible to ask the user for

one-time or permanent access. It is not possible for a WebRTC application to arbitrarily gain

access or operate either device. Furthermore, when either the microphone or camera is being

used the client UI is required to expressly show the user that the microphone or camera are

being operated. In Chrome, this takes the form of a red dot on any tab accessing a user's

media.

Issue 2018/11/08 Data Flow within the Quicklink Studio Solution

Quicklink Studio Solution

Page: 14

The philosophy of this security protection is that a user should always be making an

informed decision on whether they should permit a call to take place, or to receive a call. In

other words, a user must understand: - Who or what is requesting access to his media -

Where the media is going - Or both.

As an additional provision, the WebRTC spec specifies that browsers SHOULD stop the

camera and microphone when the UI indicator is masked (e.g. by window overlap). Although

this is more of an ideal behaviour, it isn't necessarily guaranteed, and users should exercise

caution. Fortunately, however, this additional functionality is not likely to be behaviour

expected by the user.

Screen sharing introduces further security considerations due to the inherent flexibility of

scope. A user may not be immediately aware of the extent of the information that they are

sharing. For instance, they may believe they are simply sharing a stream of a particular

window (e.g. while giving a presentation to remote parties), when in reality they are showing

their entire screen to their audience. This may be a result of the user failing to correctly

establish the initial screen sharing setup, or else that the user may simply forget the extent of

what they are sharing.

Issue 2018/11/08 Data Flow within the Quicklink Studio Solution

Quicklink Studio Solution

Page: 15

4.3. Media Encryption & Communication Security

There are a number of ways in that a real-time communication application may impose

security risks. One particularly notable one is the interception of unencrypted media or data

during transmission. This can occur between browser-browser or browser-server

communication, with an eavesdropping third-party able to see all data sent. Encryption

however, renders it effectively impossible for an eavesdropper to determine the contents of

communication streams. Only parties with access to the secret encryption key can decode

the communication streams.

Encryption is a mandatory feature of WebRTC, and is enforced on all components, including

signalling mechanisms. Resultantly, all media streams sent over WebRTC are securely

encrypted, enacted through standardised and well-known encryption protocols. The

encryption protocol used depends on the channel type; data streams are encrypted using

Datagram Transport Layer Security (DTLS) and media streams are encrypted using Secure

Real-time Transport Protocol (SRTP).

4.3.1. DTLS: Datagram Transport Layer Security

WebRTC encrypts information (specifically data channels) using Datagram Transport

LayerSecurity (DTLS). All data sent over RTCDataChannel is secured using DTLS.

DTLS is a standardised protocol which is built into all browsers that support WebRTC, and is

one protocol consistently used in web browsers, email, and VoIP platforms to encrypt

information. The built-in nature also means that no prior setup is required before use. As

with other encryption protocols it is designed to prevent eavesdropping and information

tampering. DTLS itself is modelled upon the stream-orientated TLS, a protocol which offers

full encryption with asymmetric cryptography methods, data authentication, and message

authentication. TLS is the de-facto standard for web encryption, utilised for the purposes of

such protocols as HTTPS. TLS is designed for the reliable transport mechanism of TCP, but

VoIP apps (and games, etc.) typically utilise unreliable datagram transports such as UDP.

As DTLS is a derivative of SSL, all data is known to be as secure as using any standard SSL

based connection. In fact, WebRTC data can be secured via any standard SSL based

connection on the web, allowing WebRTC to offer end-to-end encryption between peers

with almost any server arrangement.

References: [8]

Issue 2018/11/08 Data Flow within the Quicklink Studio Solution

Quicklink Studio Solution

Page: 16

4.3.1.1. DTLS over TURN

The default option for all WebRTC communication is direct P2P communication between two

browsers, aided with signalling servers during the setup phase. P2P encryption is relatively

easy to envisage and setup, but in the case of failure WebRTC setup falls back to

communication via a TURN server (if available). During TURN communication the media can

suffer a loss of quality and increased latency, but it allows an "if all else fails" scenario to

permit WebRTC application to work even under challenging circumstances. We must also

consider encrypted communication under TURN's alternative communication structure.

It is known that regardless of communication method, the sent data is encrypted at the end

points. A TURN server's purpose is simply the relay of WebRTC data between parties in a call

and will only parse the UDP layer of a WebRTC packet for routing purposes. Servers will not

decode the application data layer in order to route packets, and therefore we know that they

do not (and cannot) touch the DTLS encryption.

Resultantly, the protections put in place through encryption are therefore not compromised

during WebRTC communication over TURN, and the server cannot understand or modify

information that peers send to each other.

4.3.2. SRTP: Secure Real-time Transport Protocol

Basic RTP does not have any built-in security mechanisms, and thus places no protections of

the confidentiality of transmitted data. External mechanisms are instead relied on to provide

encryption. In fact, the use of unencrypted RTP is explicitly forbidden by the WebRTC

specification.

WebRTC utilises SRTP for the encryption of media streams, rather than DTLS. This is because

SRTP is a lighter-weight option than DTLS. The specification requires that any compliant

WebRTC implementation support RTP/SAVPF (which is built on top of RTP/SAVP) [9].

However, the actual SRTP key exchange is initially performed end-to-end with DTLS-SRTP,

allowing for the detection of any MiTM attacks.

4.3.3. Establishment of a secure link

Let us step through the process of establishing a new call on a WebRTC application. In this

instance, there will be two parties involved; Alice and Bob. The call procedure is initiated

when one party (Alice) calls the other (Bob), and the signalling process exchanges the

relevant metadata between both parties.

Issue 2018/11/08 Data Flow within the Quicklink Studio Solution

Quicklink Studio Solution

Page: 17

Once the initial ICE checks have concluded (or specifically, some of them), the two peers will

start to setup one or more secure channels. Initially, a DTLS handshake is performed on all

channels that are established by ICE. For the data channels, this step alone is enough as plain

simple DTLS is used for encryption. For the media channels however, further steps are taken.

Once the DTLS handshake completes, the keys are "exported" and used to key SRTP for the

media channels. At this stage both parties know that they share a set of secure data and/or

media channels with keys which are not known to any malicious third-party.

References: [10]

4.3.4. DTLS-SRTP vs SDES

In order to negotiate the security parameters for the media traffic session, SRTP needs to

interact with a key management protocol. This protocol is not established, offering up a

number of possible options for the task. Two such options are SDES and DTLS-SRTP.

It is worth noting that the signalling (SIP, HTTP) & media (RTP) involved in a multimedia

communication can be secured independently.

SDES

SDP Security Descriptions for Media Streams (SDES) was the option previously favoured by

WebRTC.

Within SDES, the security parameters and keys used to set up SRTP sessions are exchanged

in clear text in the form of SDP attributes. As SDP is communicated over the signalling plane,

if encryption is not additionally enacted upon such signalling messages then an

eavesdropping third party could obtain the keys for the SDES encrypted data. In other words,

a further encryption protocol should be utilised specifically for the encryption of the

signalling plane. One such option for this is to use TLS.

Securing the signalling and media independently however, can lead to the situation in that

the media user is different from the signalling user (as no guarantee is provided). To provide

this guarantee, a cryptographic binding is necessary. DTLS-SRTP is one such mechanism that

provides this, but SDES does not.

Issue 2018/11/08 Data Flow within the Quicklink Studio Solution

Quicklink Studio Solution

Page: 18

It remains a fact that even today, the majority of RTP traffic in VoIP networks is not secured.

In fact, encryption is one of the very first features customers usually ask vendors to remove

in order to meet their budgets. When secured, most of the deployments utilise SDES, which

as we just mentioned relies heavily on signalling plane security.

DTLS-SRTP

DTLS-SRTP on the other hand exchanges keys over the media plane, rather than the

signalling plane. The consequence of such a difference is that an SRTP media channel has no

need to reveal the secret encryption keys through an SDP message exchange, as is the case

with SDES.

The WebRTC specification [9] asserts that WebRTC implementations are required to support

DTLS-SRTP for key management. Moreover, it is specified to be the default and preferred

scheme, and there is no provision for other key management schemes to be implemented. In

other words, other schemes may or may not be supported at all.

If an offer or "call" is received from a peer advertising support for both DTLS-SRTP and SDES,

DTLS-SRTP must be selected - irrespective of whether the signalling is secured or not.

The Debate

It is generally accepted that DTLS-SRTP should be the mandatory and default option for the

encryption of WebRTC media. What is being questioned is whether other mechanisms,

namely SDES, should be utilised to provide backward compatibility.

From the compatibility perspective, Google's Chrome browser provides support for both

SDES and DTLS-SRTP. Mozilla's Firefox on the other hand only implements DTLS-SRTP.

References: [11] [12]

4.3.5. A Weakness in SRTP

SRTP only encrypts the payload of RTP packets, providing no encryption for the header.

However, the header contains a variety of information which may be desirable to keep secret.

One such piece of information included in the RTP header is the audio-levels of the

contained media data. Effectively, anyone who can see the SRTP packets can tell whether a

user is speaking or not at any given time. Although the contents of the media itself remains

secret to any eavesdropper, this is still a scary prospect. For example, Law enforcement

officials could determine whether a user is communicating with a known bad guy.

Issue 2018/11/08 Data Flow within the Quicklink Studio Solution

Quicklink Studio Solution

Page: 19

4.4. Web-Based Peer Authentication & Identity Management

It is desirable for a user to be able to verify the identity of their peers. I.e. a user naturally

wants to be certain that they are speaking to the person they believe that they are speaking

to, and not an imposter.

Although the signalling server may be able to go some way towards claiming a user's

identity, the signalling server itself may not (and for the case of authentication SHOULD not)

be trusted. We need to be able to perform authentication of our peers independently from

the signalling server. This can be made possible using identity providers.

Issue 2018/11/08 Data Flow within the Quicklink Studio Solution

Quicklink Studio Solution

Page: 20

A number of web-based identity providers (IdP) have recently become commonplace on the

web, including Facebook Connect, BrowserID (by Mozilla), OAuth (by Twitter). The purpose of

these mechanisms is simply to verify your identity to other services/users, on the authority of

the identity provider itself. If a user has an account on Facebook then they can then use

Facebook Connect, Facebook's IdP to prove to others that they are who they say they are on

Facebook. This allows users to tie their authentication on other services to their main account

on a "trusted" service. Note that in this case the level of "trust" that an Identity Provider

possesses is subjective to the end-point user or service and is often largely tied to user base

and reputation across the World Wide Web.

The implementations of each IdP may differ due to independent development by different

companies rather than being based on an open-source standard, but the underlying

principle and functionality remains essentially the same. IdPs do not provide authentication

for a signalling server; rather, they provide authentication for a user (and their browser

through the process). WebRTC also places no requirements on which services should be

used, and those which are utilised are based on the web application's implementation.

As the web application (calling site) is unrelated to this authentication process, it is important

that the browser securely generates the input to the authentication process, and securely

displays the output on the web application. This process must not be able to be falsified or

misrepresented by the web application.

Issue 2018/11/08 Data Flow within the Quicklink Studio Solution

Quicklink Studio Solution

Page: 21

4.5. IP Location Privacy

One adverse side-effect of using ICE is that a peer can learn one's IP address. As IP addresses

are publicly registered with global authorities, they can reveal such details as a given peer's

location. This could naturally have negative implications for a peer, which they would wish to

avoid.

WebRTC is not designed with the intention of protecting a user from a malicious website

which wants to learn this information. Typically, such a site will learn at least a user's server

reflexive address from any HTTP transaction. Hiding the IP address from the server would

require some kind of explicit privacy preserving mechanism on the client and is out of scope

of this report.

WebRTC does however provide a number of mechanisms which are intended to allow a web

application to cooperate with the user to hide the user's IP address from the other side of

the call. These mechanisms will be detailed in turn.

Issue 2018/11/08 Data Flow within the Quicklink Studio Solution

Quicklink Studio Solution

Page: 22

A WebRTC implementation is required to provide a mechanism to allow JS to suppress ICE

negotiation until user has decided to answer the call. This provision assists end users in

preventing a peer from learning their IP address if they elect not to answer a call. This has

the side-effect of hiding whether a user is online or not to their peers.

The second such provision is that any implementation will provide a mechanism for the

calling app's JavaScript to indicate that only TURN candidates are to be used. This can

prevent a peer from learning one's IP address at all.

Furthermore, there is a mechanism for the calling app to reconfigure an existing call to add

non-TURN candidates. Taken together with the previous provision, this allows ICE

negotiation to start immediately upon an incoming call notification, thereby reducing delay,

but also avoiding disclosing the user's IP address until they have decided to answer. This

allows users to completely hide their IP address for the duration of the call.

References: [13]

4.6. Signalling Layer

As the signalling protocol is not specified by WebRTC, the mechanism for encryption

obviously depends on the signalling protocol chosen. Due to the relatively open nature of

signalling security, this report will focus on and briefly explain the of the most common

protocol, SIP (Session Initiation Protocol).

SIP is a widely implemented standard used in VoIP communication to setup and tear down

phone calls. However, it is a derivative of HTTP and SMTP - both are protocols that are

regularly exploited. As it uses plain-text messages to exchange information, it is feasible for

any malicious party to tap a network and capture SIP messages. If an attacker can read a

user's sensitive information, they could use this information to spoof the user. And if the

attacker can further proceed to gain access to the operator's network, it can even be possible

for them to decipher the contents of WebRTC communication.

References: [14]

Issue 2018/11/08 Data Flow within the Quicklink Studio Solution

Quicklink Studio Solution

Page: 23

Since SIP is sent in clear text, it is trivial for a determined attacker to intercept SIP messages.

What happens next is left up to the imagination of the attacker, but it is not hard to imagine

an eventuality in that the contents of the message body or header is tampered with. If the

attacker intercepts an INVITE message, they may then proceed to change the FROM header

to reflect his or her own IP address.

References: [10] [15]

4.6.1. SIP Vulnerabilities

SIP is a communications protocol for signalling and controlling multimedia communication

sessions and is frequently implemented in VoIP technologies for the purposes of setting up

and tearing down phone calls. It can similarly be used in a WebRTC implementation for

signalling purposes, as one of a number of possible such options. However, SIP messages are

frequently sent in plain text. As this can naturally result in a number of potential attack

vectors, we will take a closer examination of this area.

SIP Flow

In the process of setting up a call, a user's browser (or "User Agent") registers with a central

registrar. This registration is a necessity in traditional VoIP as it is necessary to provide the

means to locate and contact a remote party.

When a party (Bob) wants to initiate a call, he sends an INVITE message via a central proxy

server (this is the signalling server). The server is responsible for relaying such messages and

providing the means to locate other users. The server may attempt a number of measures to

locate an end-user during this lookup process, such as utilising DNS.

Registration Hijacking

The initial browser registration is used to announce a user's point of contact and indicates

that a user's device is accepting calls. However, the process provides a vector for malicious

entities to perform a "Registration Hijack" attack.

The exchange of registration messages includes a "Contact:" field, containing the user's IP

address. Whenever the signalling server processes an incoming call, the user name (or phone

number) is matched up with the registered IP address, and the INVITE is forwarded

accordingly. These registrations are periodically updated, ensuring the records are kept

recent and up to date.

Issue 2018/11/08 Data Flow within the Quicklink Studio Solution

Quicklink Studio Solution

Page: 24

As SIP messages are always sent in plain text, it can be trivial for an attacker to intercept and

read the contents of these registration messages. Following the interception, an appropriate

tool (such as SiVuS Message generator) can be used to generate similar SIP information, but

with the user's true IP address replaced by the attacker's own. The attacker then only has to

disable the real user and send this information periodically to divert all incoming calls to

themselves.

There are a number of methods that an attacker could utilise to disable a legitimate user,

including: - Performing a DoS attack against the user's device - Deregistering the user

(another attack which is not covered here) - Generating a registration race-condition, in

which the attacker sends repeatedly REGISTER requests in a shorter timeframe (such as every

15 seconds) in order to override the legitimate user's registration request. This are all

genuine risks to WebRTC signalling services.

As the implementation of SIP does not support the checking integrity of the message

contents, modification and replay attacks are therefore not detected and are a feasible attack

vector. This attack works even if the server requires authentication of user registration, as the

attacker can once again capture, modify and replay messages as desired.

This attack can be suppressed by implementing SIPS (SIP over TLS) and authenticating SIP

requests and responses (which can include integrity protection). In fact, the use of SIPS and

the authentication of responses can suppress many associated attacks including

eavesdropping and message or user impersonation.

Other possible attacks

• MiTM attack

o If the attacker can intercept the initial SIP messages, he or she may then perform a

MiTM attack.

• Replay attack

o Captured packets could be replayed to the server by a malicious party, causing the

server to call the original destination of a call. In other words, this would possibly take

the form of a second unsolicited call request, identical to one the party had already

received. Although a nuisance, the attacker would not be party of the call, as their IP

information would not be included in the signalling packets.

• Session hijacking

o Web servers are not stateful, with each request served a separate session (alleviates

need for continuously authenticating). Cookies for authentication, but are nothing

more than a data file containing the session ID. These cookies are sent by the web

server to the browser upon initial access.

Issue 2018/11/08 Data Flow within the Quicklink Studio Solution

Quicklink Studio Solution

Page: 25

• If the cookie were to be intercepted and copied, it could allow an interceptor full access to

a session already in progress. In an attempt to mitigate this, most sites generate cookies

using an algorithm involving user IP address and a timestamp to create a unique identifier.

Encryption

Although it may seem that signalling provides a particularly tempting vantage-point for

attackers to target, all is not lost. In addition to the media streams, the signalling layer can

also be encrypted. One such encrypted option is OnSIP, which uses SIP over Secure

WebSockets (wss:// instead of ws://), with the WebSocket connection encrypted by TLS.

Although outside of this report's scope, other signalling technologies can similarly use TLS to

encrypt their WebSocket or another web traffic. As with all encryption, if the third party does

not know the secret encryption key, they are thereby unable to read the plain-text contents

of the communication. This helps eliminate the risk of much of the above attack vectors,

although it should be noted that the application programmer must specifically implement

the encrypted signalling method for this to be applicable.

References: [16]

4.7. Additional Security Topics

Viewpoint of the Telecom Network

By providing support to WebRTC, a telecom network should reasonably expect not be

exposed to increased security risk. However, devices or software in the hands of consumers

will inevitably be compromised by malicious parties.

For this reason, all data received from untrusted sources (e.g. from consumer/users) must be

validated, and the telecom network must assume that any data sent to the client will be

obtained by malicious sources.

By adopting these two principles, a telecom provider must strive to make all reasonable

attempts at protecting the consumer from their own mistakes that may compromise their

own systems.

Issue 2018/11/08 Data Flow within the Quicklink Studio Solution

Quicklink Studio Solution

Page: 26

Cross-site scripting (XSS)

Cross-site scripting is a type vulnerability typically found in web applications (such as web

browsers through breaches of browser security) that enables attackers to inject client-side

script into Web pages viewed by other users. A cross-site scripting vulnerability may be used

by attackers to bypass access controls such as the same origin policy.

Their effect may range from a petty nuisance to a significant security risk, depending on the

sensitivity of the data handled by the vulnerable site and the nature of any security

mitigation implemented by the site’s owner.

- As the primary method for accessing WebRTC is expected to be using HTML5 enabled

browsers there are specific security considerations concerning their use such as; protecting

keys and sensitive data from cross-site scripting or cross-domain attacks, WebSocket use,

iframe security, and other issues. —Because the client software will be controlled by the user

and because the browser does not, in most cases, run in a protected environment there are

additional chances that the WebRTC client will become compromised. This means all data

sent to the client could be exposed.

References: [17]

5. Comparison with competing/similar technologies

An examination of WebRTC's comparative security would fail to make sense without also

considering the security of the competition. Fortunately for WebRTC, the competition in the

web-based communication arena has its own share of issues.

This section will explore the comparative strengths and weaknesses of WebRTC and other

platforms offering competing RTC functionality.

Some platforms we COULD explore are the following. The platforms to be explored have not

yet been chosen. (To come after first-draft.)

Although widely relied upon, the additional installation processes can pose a barrier

• Flash

• Silverlight

• Jabber

• SIP

Issue 2018/11/08 Data Flow within the Quicklink Studio Solution

Quicklink Studio Solution

Page: 27

6. Secure design practices

WebRTC is built to be secure. However more than just blindly relying on the underlying

technology, it is a good idea to consciously code with security in mind. This section will

discuss coding practices that may be followed to ensure greater security over a vanilla

WebRTC implementation. In particular, these practices could be applicable to organisations

which expect to handle sensitive information, e.g. banking institutions, healthcare institutions

or confidential corporate information.

Secure Signalling

As mentioned previously, WebRTC does not impose any constraints on the signalling

process, rather leaving the developer to decide upon their own preferred method. Although

this allows for a degree of flexibility that can have the WebRTC implementation tailored to

the needs of the application, there can be risks associated with certain signalling protocols.

It is advisable to implement a signalling protocol that provides additional security, such as

encryption of signalling traffic. By default, a signalling process may not incorporate any

encryption, which can leave the contents of all exchanged signalling messages open to

eavesdropping. Applications with a focus upon security/confidentiality should therefore

ensure that their signalling layer is implemented over a secure protocol such as SIPS,

OpenSIP, HTTPS or WSS.

Authentication and peer monitoring

A basic WebRTC app requires only a user's ID in order to perform a call, with no

authentication performed from the view point of the service itself. It may be desirable to

require pre-registration or authentication before any user can participate in a call.

Unauthenticated entities should then be kept away from session’s reach, restricting

accessibility to untrusted parties.

Since the media connections are P2P, the media contents (audio and video channels) are

transmitted between peers directly in full duplex. Thus, as the signalling server maintains the

number of peers in communication, it could be consistently monitored for addition of

suspicious peers in a call session. If the number of peers actually present on signalling server

is more that the number of peers interacting on WebRTC page, then it could mean that

someone is eavesdropping secretly and should be terminated from session access by force.

Issue 2018/11/08 Data Flow within the Quicklink Studio Solution

Quicklink Studio Solution

Page: 28

Permission Requests

It is a noted behaviour that often users will agree to permission requests or similar dialogs

without consciously reading the message. This poses the risk of granting a web application

with permissions which were not actually intended by the user.

Although this behaviour itself cannot be easily dealt with, one solution could be to clearly

detail on the page what permissions the application will ask for. Such an application places a

user's privacy at the forefront.

Man-In-The-Middle

In the eventuality that a malicious party succeeds in setting up a MiTM attack, there is

typically not an easy solution to discover or fight against it. This is because the attack has no

warning, and communication can proceed as normal. If one is not expecting such an attack,

the attack will likely continue unnoticed.

However, by monitoring the media path regularly for no suspicious relays, we can take one

small step towards mitigating against MiTM attacks. This should be coupled with encrypted

signalling, as mentioned above.

Screen Sharing

An application offering any degree of screen-sharing functionality should have warnings in

place to protect the user. As previously discussed, a user may not be aware of the extent of

the screen being shared. Such an issue should fall back to a properly designed application to

provide appropriate such information.

For example, before initiating the streaming of any part of the screen, the user should be

properly notified and advised to close any screen containing sensitive information.

A Fallback

As a final fallback measure, we could venture as far as imagining a situation in that an active

call session is compromised by a unauthorised party. If a call is confirmed to be

compromised in such a way, it should be within the power of Web Application server

rendering the WebRTC capable page to cut off the call.

References: [18]

Issue 2018/11/08 Data Flow within the Quicklink Studio Solution

Quicklink Studio Solution

Page: 29

7. Conclusion

In the modern age of smartphones and mobile devices people are communicating more

than ever, and in even more personal ways than we have known before. Encryption in

particular has become a big topic in recent years, following the growing awareness of major

corporate hacking scandals and widespread government telecommunication eavesdropping.

The result of which has been a rapid increase in user distrust of such organisations and calls

for arms in implementing greatly improved security measures. All the end user wants is to

know that their personal data is kept private under control.

WebRTC has a big advantage over most VoIP services in the security area. Until now, most

services have typically treated security as optional, meaning most end users use VoIP calls

without encryption. Large corporations in particular are a leading culprit for this, choosing to

save money on cheaper implementations rather than properly considering their users or the

value of the data that they handle. But as WebRTC forbids unencrypted communication,

users can be assured that their data remains safe and private.

Having been designed with security in mind, WebRTC enforces or encourages important

security concepts in all main area. As such, as well as simply being built secure, it encourages

WebRTC developers to also take their security seriously.

As a result of this strong focus on secure communication, WebRTC is currently regarded by

some to be one of the most secure VoIP solutions out there. The main premise of having

encryption by default is that a call is private at all times. Security and encryption are no

longer considered to be optional features. And to round everything off, WebRTC is available

free to everyone, providing a tempting and reliable framework for developers to build their

next application.

Soon we can expect to see more and more communication services providing greatly

increased security to their users. But for now, WebRTC is one of those who are leading the

charge.

